### Les Événements de l'Année en Économie Médicale 2012 Séminaire JEM SFES : Introduction aux Outils Statistiques Bayésiens Paris, 26 janvier 2012

Pourquoi Bayes ?
Applications dans les modèles d'évaluation économique :
le cas de la polyarthrite rhumatoïde

R.Launois<sup>1</sup>, Le Moine JG<sup>1</sup>, Huynh MT<sup>1</sup>,

1 REES France, Paris, France



### Conflit d'Intérêt

La partie appliquée de ce travail a bénéficié du soutien institutionnel du laboratoire Pfizer



### Feuille de Route

#### 1. Méthode

- Méthode de simulation fréquentiste
- Méthode de simulation bayésienne
- Combinaison de l'Inférence Statistique Bayésienne et de l'approche Décisionnelle

#### 2. Résultats :

- Revue documentaire systématique
- Méta analyse multitraitements
- Frontière d'efficience, courbe et frontière d'acceptabilité sociale



### Incertitude et Médecine

- L'incertitude est **consubstantielle** à l'activité médicale. Quand un médecin prend une décision c'est toujours dans l'angoisse de prendre la mauvaise
- Les analyses économiques sont entachées de la même caractéristique à la fois sur l'estimation de l'efficacité, des coûts et des conséquences de la pathologie
- Le fait qu'on soit dans l'incertitude doit inciter à se poser des questions : « What if ? » : Qu'est ce qu'il se passerait si ?.
- L'analyse de sensibilité a pour but d'évaluer la stabilité des conclusions d'une analyse par rapport aux hypothèses émises
- ▼ Il y plusieurs manières de la faire



## Analyse De Sensibilité Classique

#### ➤ Modalités

- Analyse uni,bi ou tri-dimensionnelles
- Jeu limité de scénarios
- Chaîne de corrélations entre variables
- Recherche des seuils de renversement des choix

#### **▼ Limites**:

- On suppose que les autres paramètres demeurent constants
- Ne permet pas d'explorer les variations conjointes de tous les paramètres.(pas plus de 3 paramètres en même temps)
- Certaines valeurs pour une variable sont plus probables que d'autres
- → Le traitement de l'incertitude exige un regard nouveau



## Analyse de Sensibilité Probabiliste

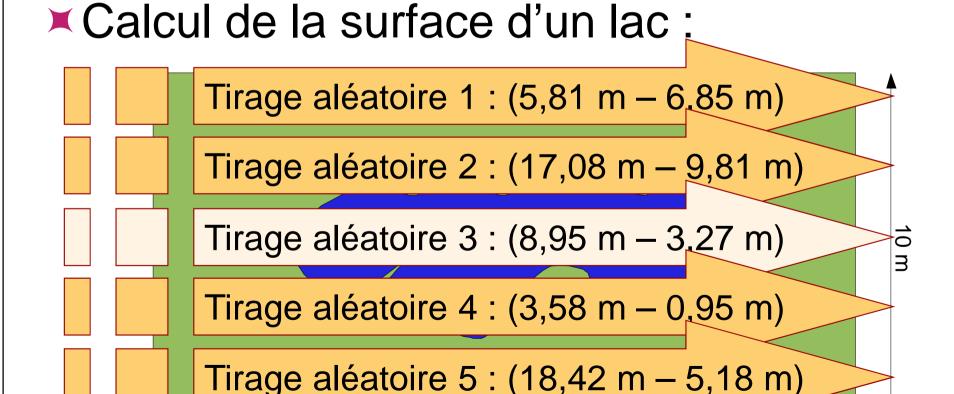
- But : Estimer l'intervalle de confiance du ratio coût efficacité Théorème de la limite centrale : ΔC, ΔE → Loi Normale. Ratio de 2 lois normales RDCE = ΔC / ΔE ≠ loi normale.
- ➤ Problème 1 : Comment peut on avoir confiance dans une statistique sans intervalle de confiance ?
- ➤ Problème 2 : Le ratio coût efficacité est discontinu au voisinage de 0
- Solution : raisonner en termes de Bénéfice Additionnel Net de Santé : BANS



## **METHODE**



### Trois Méthodes

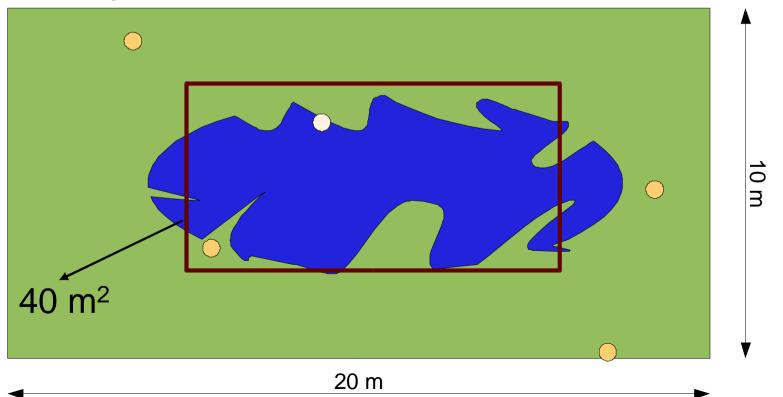

- ➤ Monte Carlo : obtenir la distribution d'échantillonnage à partir de la distribution a priori des paramètres du modèle: analyse de sensibilité paramétrique.
- ➤ Bootstrap : obtenir la distribution d'échantillonnage à partir de la distribution empirique des observations par tirage au sort avec remise: analyse de sensibilité non paramétrique
- ➤ Distribution a posteriori Bayésienne. On choisit une distribution a priori des paramètres pour représenter l'incertitude de la moyenne dans la population et sa variabilité et on actualise l'information, par apport de données nouvelles. À la sortie on a une distribution de valeur.

# Méthodes de simulation fréquentiste



### Simulation: Définition

➤ Toute méthode qui utilise une séquence de nombres aléatoires pour estimer une valeur numérique. [les statistiques sont accumulées durant la période des itérations pour évaluer les grandeurs d'intérêt à la fin de l'exécution du programme]



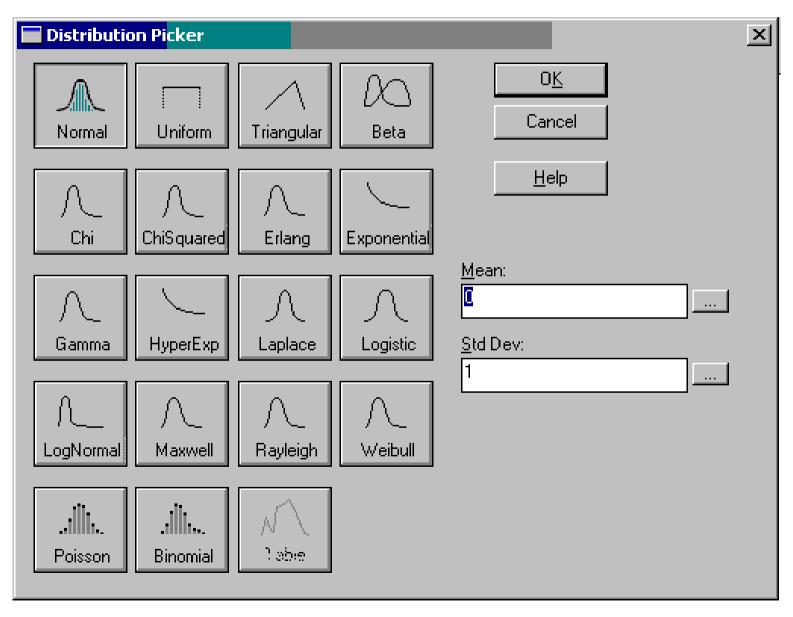



## Ex d'Estimation par Simulation de Monte Carlo

- La technique de simulation Monte Carlo s'appuie sur l'échantillonnage des distributions des quantités incertaines
- Ex classique : Calcul de la surface d'un lac; surface du terrain 10\*20=200m². 5 tirs effectués.1/5e des tirs touchent le lac → surface du lac = 200m² /5 = 40m²

Attention à procéder à un nombre suffisant de tirages!




## Types De Monte-Carlo

- ➤ Simulation de premier ordre : l'itinéraire d'un individu est tiré au hasard en tenant compte de la probabilité fixe de survenue de chacun des événements qui se trouvent sur son chemin
  - Probabilités constantes
  - Sur un grand nombre d'itinéraires, on retrouve la probabilité de survenue de chaque conséquence possible
- Simulation de second ordre : tirage au sort de chaque variable aléatoire en fonction de sa loi de probabilité, puis calcul des résultats attendus
  - Prise en compte de l'incertitude sur les variables
  - Selon les valeurs obtenues, le choix de la stratégie optimale pourra différer
- Simulation de troisième ordre : combinaison des deux simulations précédentes
- TreeAge® permet les trois variantes

## Principe de Construction d'un Modèle Stochastique

- A chaque variable aléatoire, on associe non pas une probabilité moyenne mais une distribution de probabilité qui décrit leur fréquence d'apparition anticipée
- ➤ Pour une famille arrêtée de courbes, on caractérise la valeur de ses paramètres théoriques non observables qui simule le mieux la réalité observée
- Une fois caractérisée la loi de distribution, on tire au sort la réalisation de chaque variable,
- ➤ le résultat d'une analyse quantitative stochastique des risques est une distribution de probabilité.
- Sur un grand nombre de tirages, la moyenne des sorties du modèle approche leur espérance

### Du Bon Choix De la Loi De Probabilité



## Les Principaux Processus Stochastiques

- Uniforme : Unif(Min = a ; Max = b)
  - Loi bornée sur [a;b]
  - Utile lorsque l'on n'a aucun a priori sur la probabilité des valeurs prises par un paramètre, mais que l'on connaît son intervalle de variation
- **Normale : N(\mu;\sigma^2)** avec : $\sigma^2 = s^2/n$ 
  - Le support de la distribution normale est l'ensemble des réels de moins l'infini à plus l'infini  $]-\infty$ ;  $+\infty[$ ,
  - symétrique, comporte des valeurs négatives, à utiliser avec césure
- **Log-Normal:LogNorm(α**;  $\beta$ )
  - Définie sur [0 ;+∞[
  - Recommandée pour les distributions asymétriques
- $\times$  Beta : Beta( $\alpha$ ;  $\beta$ )
  - Définie sur [0 ;1]
  - Distribution polymorphe
- **Solution Gamma: Gamma(** $\alpha$  ; β)
  - Définie sur [0 ;+∞[
  - Distribution polymorphe

### Formes Fonctionnelles Recommandées

- ➤ Probabilités [0 ;1] : loi Beta
- Risques relatifs [0;∞[: log normale ou loi Gamma
- Coûts [0 ;∞[ loi Gamma ou Lognormale ]
- ▼ Valeurs inconnues: Loi Uniforme non informative

Une loi de distribution beta a priori associée à une loi binomiale  $\rightarrow$  une loi beta a posteriori; une loi gamma a priori associée à une loi de poisson  $\rightarrow$  une loi a posteriori gamma



# Caractérisation des Lois à Partir des Statistiques Descriptives : [Méthode des Moments]

- ➤ les moments : la moyenne et la variance sont les plus connus (le premier moment = la moyenne d'une distribution, le deuxième moment = la variance). Les moments d'ordre plus élevés sont utilisés pour *caractériser d'autres aspects de la distribution*. Le troisième moment est par exemple lié à l'asymétrie ou la dissymétrie
- ➤ la méthode des moments consiste à égaliser les moments (connus) de l'échantillon et les moments correspondants (inconnus) de la distribution : on estime les moments théoriques par les moments empiriques et on résout le système d'équations.

### Loi Beta

- Beta(α; β)
- Continue sur [0; 1]
- Densité :

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

Espérance :

$$E[X] = \frac{\alpha}{\alpha + \beta}$$

Variance :

$$V[X] = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$

- Caractéristiques de forme :
  - $\alpha = \beta = 1$ : Unif(0; 1);  $\alpha = \beta$ : symétrique
  - $\alpha$  <1,  $\beta$  < 1 : Courbe en U
  - $\alpha = 1$ ,  $\beta > 1$ : décroissante ;  $\alpha > 1$ ,  $\beta = 1$ : croissante



### Calcul des Moments de Beta

- ➤ La loi beta est caractérisée par deux paramètres
  - Beta(alpha;beta) ou occasionnellement par beta(r;n-r) où r décompte le nombre d'évènements,et alpha son complément c.a.d le nombre de non événements n-r : beta(r; n-r).
  - x est la moyenne empirique et S l'écart type de l'échantillon
- Egalons les premiers moments

$$\overline{x} = \alpha / \alpha + \beta$$

Puis les seconds

$$s^{2} = \frac{\alpha\beta}{(\alpha + \beta)^{2}(\alpha + \beta + 1)}$$

Et résolvons p/r aux variables observables  $\alpha + \beta = n = [\overline{x}(1-\overline{x})/s^2] - 1$ 

Briggs A, Smdm 2002 ;22:298-308

$$\alpha = \overline{x} (\alpha + \beta); s^{-2} = \frac{\overline{x} (\alpha + \beta) \times (\alpha + \beta) - \overline{x} (\alpha + \beta)}{n^{-2} \times (n+1)} = \frac{\overline{x} n^{-2} \times (1 - \overline{x})}{n^{-2} \times (n+1)}; n + 1 = \frac{\overline{x} \times (1 - \overline{x})}{s^{-2}}$$



## Exemples

- $\mathbf{p}_1 = 48\%$ , estimé sur 50 patients
- Méthode pragmatique
  - $-\alpha$  = Nombre de « succès » = 24
  - $-\beta$  = Nombre d'« échecs » = 26
  - $-p_1 \sim Beta(24; 26)$
- ▼ Méthode des moments:utilisation de la Loi Normale
  - Si on connaît  $\overline{x}$  et son  $IC_{95\%} \rightarrow IC = \overline{x} \pm 1.96$ \*s
    - EV = 7,9 ans.  $IC_{95\%}$  = [4,9; 10,9] ans:
    - $IC = 7.9 \pm 3.0$
    - IC = 7,9 ± 1,96\*s On mesure l'étendue par rapport à une des bornes
    - $\sigma = 3/1,96 = 1,53$  ans
  - $EV \sim Norm(7,9; 1,53^2)$



# Méthodes de simulation bayésiennes

# Application des Lois de Probabilité : Le Paradigme Bayésien

- ➤ Exemple : test de dépistage
  - Dans une population donnée, la prévalence d'une maladie M est de 0,10 la cote a priori d'être malade est égale 0,10/0,90 soit 1 chance d'être malade contre 9 de pas l'être
  - Il existe un test de dépistage détectant 96 % des patients vraiment malades (Se) et 2% des patients en bonne santé mais faussement positifs (Sp=98 %)(1-Sp=2)
  - Une personne est dépistée pour le test. A combien peuton parier qu'elle soit réellement malade?

# R.p.Bayes : L'Actualisation des Connaissances à la Lumière des Observations

- ➤ Pari (cote) a priori d'avoir la maladie : 1/9=0,11 le sujet a une chance d'avoir la maladie contre neuf de ne pas l'avoir
- ➤ Rapport de vraisemblance : 0,96/0,02 = 48 un individu ayant un test + a 48 fois plus de risque d'être malade qu'un individu sain avec un R+
- ➤ Pari (cote) a posteriori : 0,11 \* 48 = 5,28 Un individu ayant un test + a 5,28 fois plus de chance d'être malade que de pas l'être

## Théorème De Bayes: Ce Qu'il Faut Retenir

➤ La distribution a posteriori est un **compromis** entre la distribution a priori et la fonction de vraisemblance

distribution a posteriori ∝ distribution a priori \* fonction de vraisemblance

La statistique bayésienne prend en compte les *informations apportées par l'échantillon* (approche classique) *mais également toute autre information* que l'on pourrait avoir a priori sur un paramètre.

## Revue Sytématique et Méta-Analyses

### Revue Systématique qualitative (7 étapes)

- 1. Structuration de la question clinique sur la base des critères PICOS Population cible, intervention, comparateur, outcome, schéma d'étude
- définition ex ante des critères d'éligibilité et de non éligibilité des études
- 3. Identification des descripteurs correspondants(CISMef, EMTREE, MESH ou autres) et Ecriture de l'équation de recherche
- 4. Interrogation des *bases* documentaires (*deux* au moins) sur la *période* 2000-2010
- 5. Sélection sous END Notes, des articles qui répondent aux critères d'éligibilité, fusion, sélection et présentation du diagramme de flux
- **6. Evaluation** de la qualité des études (validité interne-externe)

## Extraction des données selon une grille standardisée

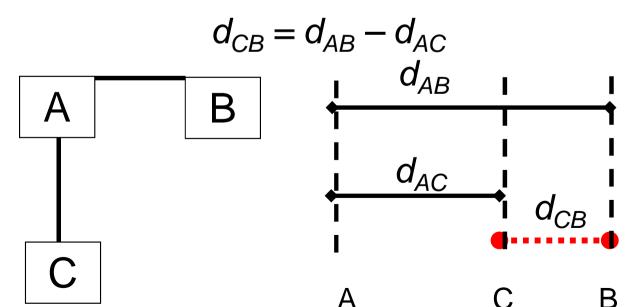
Tables de données probantes

### Revue systématique quantitative

- 1. Synthèse données probantes : MA, MCT, MHB
- 2. Estimation de l'hétèrogénéité : l<sup>2</sup>, Q cochrane
- 3. Neutralisation des Biais : méta Régression
- 4. Vérication de la cohérance sur les boucles



## Sélection du Comparateur de Référence


On recherche l'efficacité relative de B par rapport à C en l'absence d'essai les comparant en tête à tête. On peut les comparer indirectement en rapportant B et C à un comparateur pivot A par ex : B p/r à A, C p/r à A (le comparateur de référence est indicé en premier dans l'identification de l'odd ratio)

OR[CB] = [odds B/odds C]

OR[CB] = [odds B/ odds A] / [odds C/ odds A]

OR[CB] = OR[AB] / OR[AC]

Log OR[CB]) = Log OR [AB] - Log OR [AC]





### Modèle à Effets Fixes

➤ Nombre de succès *r.* L'indice s[i] k identifie l'essai, k le bras de traitement anti TNF :

- 
$$r_{s[i]k}$$
 -  $Bin(p_{s[i]k}, n_{s[i]k})$ 

- ➤ Pour chaque essai s[i] k comparant le traitement k au traitement b du groupe contrôle : logit(p s[i] k) =
  - $\mu_{s[i]}$  + si k = b
  - $\mu$  s[i] +  $d_{bk}$  si k  $\neq$  b
- ★ d<sub>bk</sub> la quantité d'effet mesurée en log OR. d<sub>bk</sub> n'est pas indicé en fonction de l'essai, on le postule égal pour tous les essais.
- Comparateur commun : Traitement A. Effets estimés : log OR d<sub>Ak</sub>. Pour chaque essai comparant le traitement k au traitement b du bras contrôle on a :
  - $logit(p_{s[i]k}) = \mu_{s[i]} + d_{bk} = \mu_{s[i]} + d_{Ak} d_{Ab}$



### Modèle à Effets Aléatoires

- ▼ Il reprend le modèle précédent (effets fixes) :
  - $r_{s[i]k}$  ~  $Bin(p_{s[i]k}, n_{s[i]k})$ .
  - logit(p s[i] D)=  $\mu s[i] / (DMARD classique)$
  - logit(p s[i] T) =  $\mu s[i] + \delta s[i] k$
- ➤ L'efficacité relative δest maintenant indicé par étude s[i]: on admet que la quantité d'effet du traitement k mesurée en log OR puisse être différent entre les essais.
- Les effets spécifiques aux essais ont une distribution commune :  $\delta_{\text{sijk}} \sim \text{Norm}(\text{md}, \sigma^2)$ .
  - md est l'effet du traitement dans la population,
  - σ² la variance inter-étude de cet effet. Plus σ est élevé,
     plus l'hétérogénéité entre les études est grande.

### Modèle MCT Nombre de Réponse ACR50 Graphe Orienté Acyclique [DAG directed acyclic graph]

- Le raisonnement inductif de l'Inférence Statistique, consiste à parcourir le graphe dans le sens inverse des flèches. Il s'agit de partir des données et de faire remonter l'information vers les paramètres
- Le raisonnement déductif de la Modélisation parcourt le graphe dans le sens des flèches, Il s'agit de descendre des paramètres vers les données
- Les variables aléatoires sont représentées sous la forme d'ellipses, une distribution de probabilité leur est associée
- Les données apparaissent dans un carré ou un rectangle.
- flèches simples : relations stochastiques conditionnelles ;
- flèches doubles : relations logiques déterministes.
- L'empilement des feuilles symbolise le nombre d'itérations.

Raisonnement inductif

Les variables indépendantes (les paramètres) sont à l'extérieur du cadre



#### **Indices**

X: i : bras 46, s[i] : études 22, k[i] : traitements 7+3+Pb

▼r [i] : nombre de répondeurs ;

▼p[i] : probabilité de réponse ;

▼n[i] : effectif ;

▼ mu[s[i]] : le log de la cote (logOdds) pour chaque étude:

delta [i] : log du rapport de cotes (logOddsRatio);

➤ md [i] : moyenne « vraie » de la distribution dans la population de l'effet relatif du ttx k du bras[i] par rapport au ttx de référence, mesuré en log du rapport de cotes (logOR)

▼d[k[i]]: distribution dans la population de l'effet relatif du ttx k du bras [i] par rapport a un ttx de référence mesuré en log du rapport de cotes (logOR) = une différence de log de cote,

tau : la précision du logOR.



### Paramètres Estimés

- ➤ Efficacité des traitements: (moyenne, écart-type, intervalle de crédibilité à 95%):
  - Les taux absolus de réponse ACR50 de chaque ttx k [T<sub>k</sub>] qui tient compte de la valeur moyenne que prend ce critère de jugement dans les bras contrôle des essais sur le traitement k : (i.e.le SMR).
  - L'efficacité relative des ttx k mesurée en log ORs  $[d_k]$  par rapport à un comparateur pivot: «le numéraire » (i.e.l' ASMR).
  - les ORs des traitements les uns par rapport aux autres : or [,].

#### **X** Classement des traitements :

Probabilité pour chaque traitement k d'être le traitement le plus efficace par rapport à l'ensemble des traitements disponibles: best [,] ou d'être plus efficace qu'un autre traitement: psup [,].

## Combinaison de l'Inférence Statistique Bayésienne et de Approche Décisionnelle

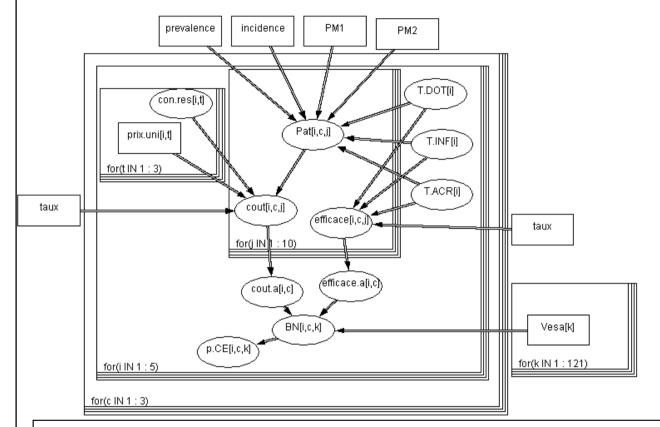
# Association des Probabilités d'Occurrence et des Conséquences

- Toute inférence statistique se fonde sur la détermination de 3 facteurs :
  - 1. La distribution *a priori* des paramètres  $\pi(\theta)$ ;
  - 2. La famille des *lois des observations*  $f(x/\theta)$ ;
  - 3. Les conséquences dommageables ou bénéfiques associées aux décisions L(d,  $\theta$ ), U(d, $\theta$ ).
- Soit l'espace de référence des décisions possibles. On appelle coût, la fonction L(d, θ) qui évalue les «conséquences dommageables» résultant du choix de la décision d quand le paramètre est θ.
- A l'opposé,on appelle utilité la fonction U(d,θ), bien connue des économistes : qui évalue les « conséquences bénéfiques» résultant du choix d quand le paramètre est

# Critère de Jugement : la Maximisation de l'Intérêt de Santé Publique

▶ le bénéfice net de santé (BNS) d'une intervention est égale à l' utilité des bénéfices thérapeutiques qui lui sont associés, monétarisée sur la base des Efforts Financiers considérés comme Socialement Acceptables par la collectivité V<sub>EFSA</sub>, moins le coût des moyens qui doivent être mis en œuvre pour les obtenir

BNS<sub>1</sub>= 
$$V_{EFSA} E_1 - C_1$$
 BNS<sub>2</sub>=  $V_{EFSA} E_2 - C_2$  [ $V_{EFSA}$  = la valeur tutélaire de l'unité de résultat]


Le bénéfice additionnel net de santé (BANS) d'un programme par rapport à un autre est égal à la différence entre l'utilité du surcroît de santé redonnée V<sub>EFSA</sub> \*ΔE valorisée sur la base des efforts financiers considérés comme acceptables par la collectivité V<sub>EFSA</sub> et le montant supplémentaire des dépenses [ΔC] qui doivent être engagées, pour en assurer la mise en place

▼ règle de décision : si BANS = > 0 le bilan de l'innovation est positif en termes de santé publique ; si BANS <0 il ne l'est pas, et le projet doit être écarté ;
</p>

Briggs A, Smdm 2002 ;22:298-308

### Formulation Choisie: Le Bénéfice Net de Santé

#### Raisonnement déductif



#### Les indices

- ➤ i: traitement; c: ligne de traitement dont « 3 »: deux lignes confondues; j: cycle; t: type de coût (acquisitions, administration, examens),k: indice de Vesa
- ➤ PM1 et PM2 : parts de marché en 1ère et 2ème lignes de traitement
- ➤ T.DOT [i] : taux d'abandons; T.INF [i] : taux d'infections; T.ACR [i] : taux de réponse ACR50;
- $\times$  pat[i,c,j] : nombre de patients;
- **x** con.res [i,t] : consommation de ressources;
- ➤ prix.uni[i,t] : prix unitaire traitement;

- **▼**cout[i,c,j] : coût de txt;
- ▼efficac[i,c,j] : taux de maintien sous txt;
- # efficace.a[i,c] : taux annuel moyen de maintien sous txt;
- ➤ coût.a[i,c] : coût annuel moyen de txt; BN[i,c,k] : bénéfice collectif net;
- ➤ taux: taux d'actualisation; Vesa[k] : valeur de l'effort socialement acceptable;
- ▼p.CE [i,c,k] : probabilité d'être meilleur en termes de santé publique que le ou les comparateurs





## Descriptif du Modèle de Simulation

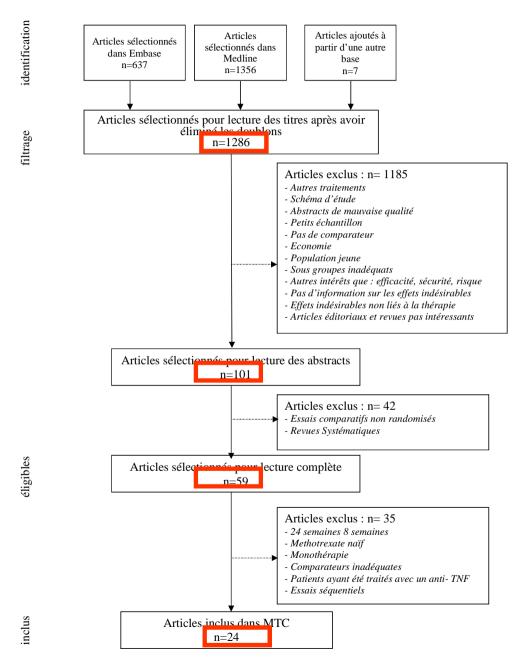
- ➤ **Population cible :** cas **prévalents** de PR ayant eu une réponse inadéquate à un traitement de fond classique (DMARD)
- **▼ Point de vue :** Système de soins
- **▼ Horizon temporel :** 5 ans :début 2011 à fin 2015
- Traitements étudiés :
  - 5 anti-TNF α : adalimumab (Humira®), certolizumab pegol (Cimzia®), etanercept (Enbrel®), golimumab (Simponi®), et infliximab (Remicade®)
  - 1 anticorps contre le récepteur de (IL6) : tocilizumab (RoActemra®)
- Critères de jugement : ACR 50, abandons de traitement, infections
- **Type de simulation**: MCMC sur **Multicohorte dynamique**
- **▼ Pas de la simulation** : 26 semaines



# Données Sources : Coûts d'acquisition des Biothérapies

| Traitement   | Dosage et fréquence                                                                                   | Nombre de seringues<br>ou de flacons par an | Nombre d'unités<br>par boîtes | Prix fabricant<br>HT de la boite | Coût annuel<br>1 <sup>ère</sup> année |
|--------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------|----------------------------------|---------------------------------------|
| Humira       | Une injection de 40 mg toutes les 2 semaines                                                          | 26                                          | 2                             | 924 €                            | 12 014 €                              |
| Cimzia       | Une injection de 400 mg aux semaines s0, s2 et s4, puis une injection de 200 mg toutes les 2 semaines | Initiation: 16<br>Entretien: 13             | 2                             | 764€                             | (6 112 €)<br>(49 66 €)<br>11 078 €    |
| Enbrel       | Une injection de 50 mg une fois par semaine                                                           | 52                                          | 4                             | 908 €                            | 11 801 €                              |
| Simponi      | Une injection de 50 mg toutes les 4 semaines                                                          | 13                                          | 1                             | 1 815 €*                         | 23 602 €                              |
| Remicade     | Perfusion à 4 mg/kg† aux semaines s0, s2 et s6, puis toutes les 8 semaines                            | Initiation: 15<br>Entretien: 10             | 1 sachet de 100 mg            | 483 €                            | (7 245 €)<br>(4 830 €)<br>12 075 €    |
| RoActemra    | Perfusion à 8 mg/kg toutes les 4 semaines                                                             | 39                                          | 1 flacon de 10 ml             | 362 €                            | 14 118 €                              |
| Methotrexate | e Une injection de 15 mg par semaine                                                                  | 156                                         | 1                             | 1,23€                            | 192 €                                 |

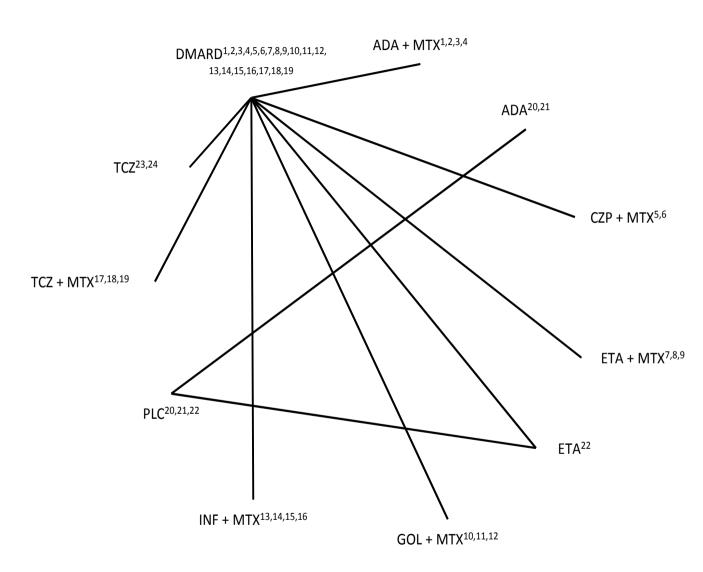
<sup>\*</sup> Coté par assimilation; † poids moyen tout sexe confondu 66kg INSEE Première n°10123 Février 2007


# Vignettes de Coûts Annuels [€<sub>2011</sub>]

| 1 200 €       | 1 100 €                          | 1 000 €                                                                                                                                                                                           | 1 100 €                                                                                                                                                    | 1 60€                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 600 €                                                                                                                                                                                                                             |
|---------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                                  |                                                                                                                                                                                                   |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 700 €                                                                                                                                                                                                                               |
| <b>-</b>      |                                  |                                                                                                                                                                                                   | • •                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0€                                                                                                                                                                                                                                  |
|               |                                  |                                                                                                                                                                                                   |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 900 €                                                                                                                                                                                                                               |
|               | _                                | -                                                                                                                                                                                                 | -                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 €                                                                                                                                                                                                                                 |
|               |                                  |                                                                                                                                                                                                   |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     |
| 400 €         | 300 €                            | 200 €                                                                                                                                                                                             | 300 €                                                                                                                                                      | 14 000 €                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18 000 €                                                                                                                                                                                                                            |
| 100 €         | 100 €                            | 100 €                                                                                                                                                                                             | 100 €                                                                                                                                                      | 200 €                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20€                                                                                                                                                                                                                                 |
| 0€            | 0€                               | 0€                                                                                                                                                                                                | 0€                                                                                                                                                         | 0€                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0€                                                                                                                                                                                                                                  |
| 300 €         | 200 €                            | 100 €                                                                                                                                                                                             | 200 €                                                                                                                                                      | 300 €                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 300 €                                                                                                                                                                                                                               |
| 0€            | 0€                               | 0€                                                                                                                                                                                                | 0€                                                                                                                                                         | 13 500 €                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17 500 €                                                                                                                                                                                                                            |
|               |                                  |                                                                                                                                                                                                   |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     |
| 12 014 €      | 11 078 €                         | 11 801 €                                                                                                                                                                                          | 23 602 €                                                                                                                                                   | 2 075 €                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14 118 €                                                                                                                                                                                                                            |
| Adalimumab Ce | rtolizumab E                     | tanercept Go                                                                                                                                                                                      | olimumab In                                                                                                                                                | fliximab To                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cilizumab                                                                                                                                                                                                                           |
|               | 12 014 €  0 €  300 €  0 €  100 € | 12 014 €       11 078 €         0 €       0 €         300 €       0 €         100 €       100 €         400 €       300 €         0 €       400 €         0 €       0 €         800 €       700 € | 12 014 € 11 078 € 11 801 € $ 0 € 0 € 0 € 300 € 200 € 100 € 0 € 0 € 100 € 100 € 400 € 300 € 200 €   0 € 0 € 0 € 400 € 0 € 400 € 0 € 0 € 800 € 700 € 700 € $ | 12 014 €         11 078 €         11 801 €         23 602 €           0 €         0 €         0 €         0 €           300 €         200 €         100 €         200 €           0 €         0 €         0 €         100 €           100 €         100 €         100 €         300 €           400 €         300 €         400 €         400 €           0 €         0 €         0 €         0 €           800 €         700 €         700 €         700 € | 0 ∈ 0 ∈ 0 ∈ 0 ∈ 13500 ∈ 300 ∈ 200 ∈ 100 ∈ 200 ∈ 300 ∈ 0 ∈ 0 ∈ 0 ∈ 0 ∈ 0 ∈ 100 ∈ 100 ∈ 100 ∈ 200 ∈ 400 ∈ 300 ∈ 200 ∈ 300 ∈ 14 000 ∈ $ 0 ∈ 0 ∈ 0 ∈ 0 ∈ 0 ∈ 0 ∈ 400 ∈ 300 ∈ 400 ∈ 900 ∈ 0 ∈ 0 ∈ 0 ∈ 0 ∈ 800 ∈ 700 ∈ 700 ∈ 700 ∈ 700 ∈$ |

# **RESULTATS**

# revue systématique dans la Polyarthrite rhumatoïde


## Diagramme de Flux de Sélection des Essais





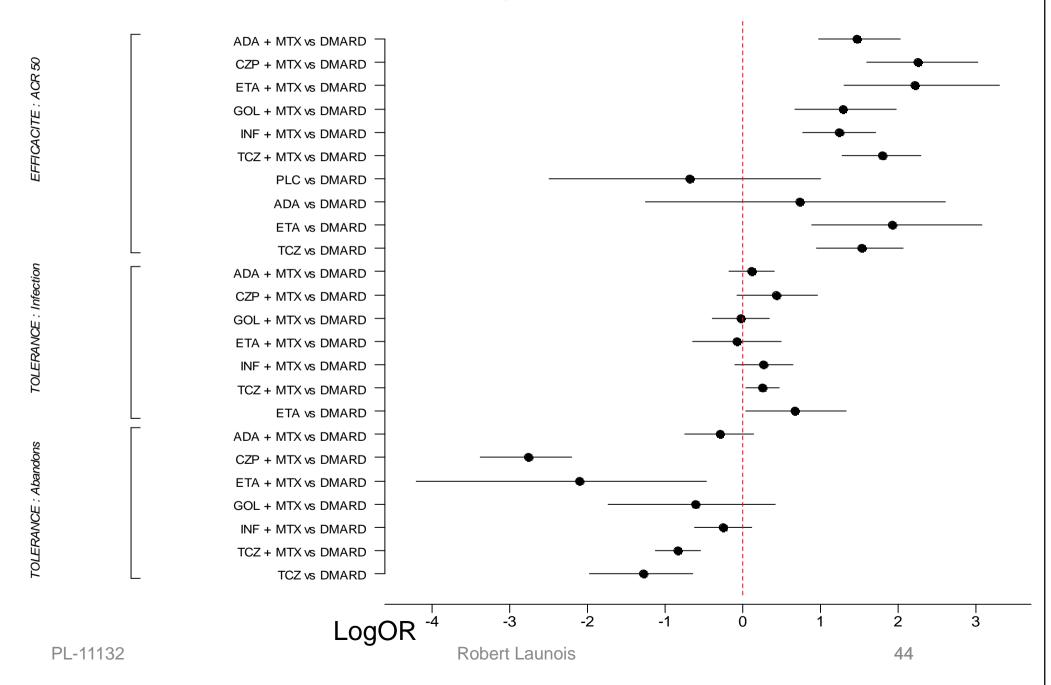
# Population et Réseau de Preuves

|    | Etudes                   | N patients |
|----|--------------------------|------------|
| 1  | Furst 03 (STAR)          | 636        |
| 2  | Keystone 04 (DE019)      | 407        |
| 3  | Kim 07                   | 128        |
| 4  | Weinblatt 03 (ARMADA)    | 129        |
| 5  | Keystone 08 (RAPID1)     | 592        |
| 6  | Smollen 09 (RAPID2)      | 373        |
| 7  | Combe 06                 | 254        |
| 8  | Klareskog 04 (TEMPO)     | 682        |
| 9  | Weinblatt 99             | 89         |
| 10 | Kay 08                   | 70         |
| 11 | Keystone 09 (GO-FORWARD) | 222        |
| 12 | Kremer 10                | 258        |
| 13 | Maini 99 (ATTRACT)       | 174        |
| 14 | Schiff 08 (ATTEST)       | 275        |
| 15 | Westhoven 06 (START)     | 723        |
| 16 | Zhang 06                 | 173        |
| 17 | Genovese 08 (TOWARD)     | 1 216      |
| 18 | Maini 06 (CHARISMA)      | 151        |
| 19 | Smolen 08 (OPTION)       | 409        |
| 20 | Miyasaka 08 (CHANGE)     | 178        |
| 21 | Van de Putte 04          | 223        |
| 22 | Moreland 99              | 158        |
| 23 | Nishimoto 2007 (SAMURAI) | 306        |
| 24 | Nishimoto 2008 (SATORI)  | 127        |
|    | TOTAL                    | 7 953      |

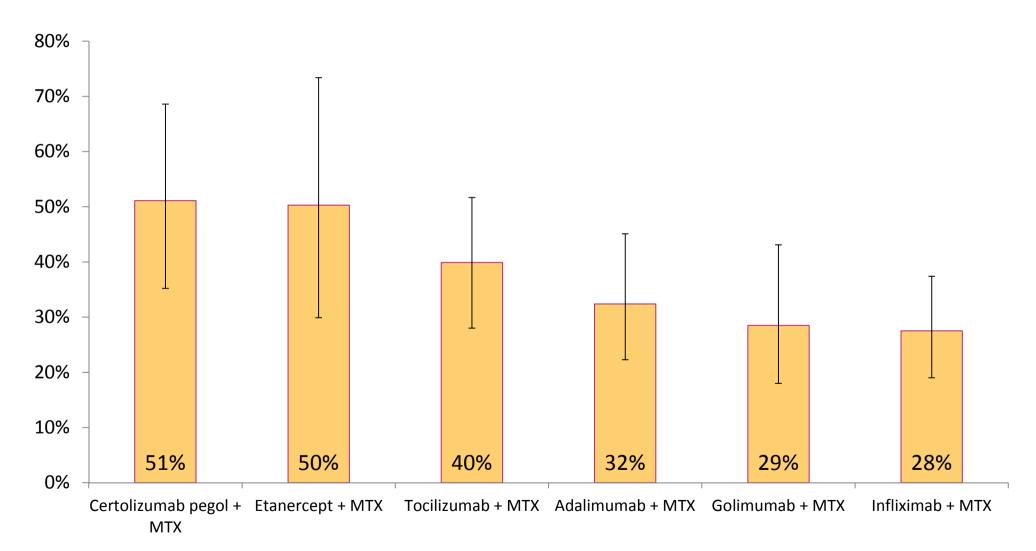


Le réseau permet d'identifier les essais qui ont en commun un même comparateur et de vérifier le caractère connecté ou non du faisceau de preuves




# Taux de Réponse ACR 50 des Essais

| Auteur, Date, Essais   | Bras        | Effectif | # de R+ | Taux de réponse | Auteur, Date, Essais      | Bras        | Effectif | #de R+ | Taux de réponse |
|------------------------|-------------|----------|---------|-----------------|---------------------------|-------------|----------|--------|-----------------|
| Furst 2003, STAR       | ADA + DMARD | 318      | 92      | 29%             | Keystone 2009, GO-FORWARD | GOL + DMARD | 89       | 33     | 37%             |
|                        | Pb + DMARD  | 318      | 36      | 11%             |                           | Pb + DMARD  | 133      | 18     | 14%             |
| Keystone 2004, DE019   | ADA + DMARD | 207      | 81      | 39%             | Kremer 2010               | GOL + DMARD | 129      | 24     | 19%             |
|                        | Pb + DMARD  | 200      | 19      | 10%             |                           | Pb + DMARD  | 129      | 12     | 9%              |
| Kim 2007               | ADA + DMARD | 65       | 28      | 43%             | Maini 1999, ATTRACT       | INF + DMARD | 86       | 22     | 26%             |
|                        | Pb + DMARD  | 63       | 9       | 14%             |                           | Pb + DMARD  | 88       | 4      | 5%              |
| Miyasaka 2008, CHANGE  | ADA         | 91       | 22      | 24%             | Schiff 2008, ATTEST       | INF + DMARD | 165      | 61     | 37%             |
|                        | Pb          | 87       | 5       | 6%              |                           | Pb + DMARD  | 110      | 22     | 20%             |
| van de Putte 2004      | ADA         | 113      | 25      | 22%             | Westhovens 2006           | INF + DMARD | 360      | 110    | 31%             |
|                        | Pb          | 110      | 9       | 8%              |                           | Pb + DMARD  | 363      | 33     | 9%              |
| Keystone 2008, RAPID 1 | CZP + DMARD | 393      | 146     | 37%             | Zhang 2006                | INF + DMARD | 87       | 38     | 44%             |
|                        | Pb + DMARD  | 199      | 15      | 8%              | <u> </u>                  | Pb + DMARD  | 86       | 22 —   | 26%             |
| Smolen 2009, RAPID 2   | CZP + DMARD | 246      | 80      | 33%             | Genovese 2008, TOWARD     | TCZ + DMARD | 803      | 302    | 38%             |
|                        | Pb + DMARD  | 127      | 4       | 3%              |                           | Pb + DMARD  | 413      | 37     | 9%              |
| Combe, 2006            | ETA + DMARD | 101      | 53      | 52%             | Maini 2006, CHARISMA      | TCZ + DMARD | 50       | 27     | 54%             |
|                        | ETA         | 103      | 48      | 47%             |                           | TCZ         | 52       | 21     | 40%             |
|                        | Pb + DMARD  | 50       | 7       | 14%             |                           | Pb + DMARD  | 49       | 14     | 29%             |
| Weinblatt 1999         | ETA + DMARD | 59       | 23      | 39%             | Nishimoto 2007, SAMURAI   | TCZ         | 158      | 90     | 57%             |
|                        | Pb + DMARD  | 30       | 1       | 3%              |                           | Pb + DMARD  | 148      | 26     | 18%             |
| Moreland 1999          | ETA         | 78       | 31      | 40%             | Nishimoto 2009, SATORI    | TCZ         | 61       | 33     | 54%             |
|                        | Pb          | 80       | 4       | 5%              |                           | Pb + DMARD  | 66       | 11     | 17%             |
| Kay 2008               | GOL + DMARD | 35       | 13      | 37%             | Smolen 2008, OPTION       | TCZ + DMARD | 205      | 90     | 44%             |
|                        | Pb + DMARD  | 35       | 2       | 6%              |                           | Pb + DMARD  | 204      | 22     | 11%             |


# comparaisons multitraitements dans la Polyarthrite rhumatoïde

#### MCT: Efficacité et Sécurité Relatives Estimées24s

[Sans Tempo et Armada]



# Paramètres d'Efficacité MCT: Taux de Réponse Absolue ACR 50 à 24s







# Recap MCT : Efficacité Clinique et Tolérance des Thérapies Ciblées

|                          | ACR 50                  | Infections                 | Arrêt de traitement      | Taux de maintien ttx       | Référence   |
|--------------------------|-------------------------|----------------------------|--------------------------|----------------------------|-------------|
| Adalimumab + MTX         | 32,40%<br>[22%;45%]     | 38,10%<br>[31%;45%]        | <b>16,10%</b> [11%;23%]  | 16,83%<br>[11%;24%]        | 1,2,3       |
| Certolizumab pegol + MTX | <b>51,11%</b> [35%;69%] | <b>45,70%</b> [34%;58%]    | <b>1,60%</b> [1%;3%]     | <b>27,31%</b> [17%;39%]    | 4,5         |
| Etanercept + MTX         | 50,32%<br>[30%;73%]     | 33,80%<br>[23%;46%]        | <b>3,10%</b> [0%;13%]    | 32,28%<br>[18%;48%]        | 6,7         |
| Golimumab + MTX          | <b>28,54%</b> [18%;43%] | <b>34,90%</b> [27%;43%]    | <b>12,40%</b> [5%;27%]   | <b>16,28%</b> [10%;25%]    | 8,9,10      |
| Infliximab + MTX         | <b>27,48%</b> [19%;37%] | <b>41,80%</b> [33%;51%]    | <b>16,8%</b> [12%;22%]   | <b>13,31%</b> [9%;19%]     | 11,12,13,14 |
| Tocilizumab + MTX        | <b>39,93%</b> [28%;52%] | <b>41,40%</b><br>[36%;47%] | <b>10,1%</b><br>[8%;13%] | <b>21,03%</b><br>[15%;28%] | 15,16,17    |

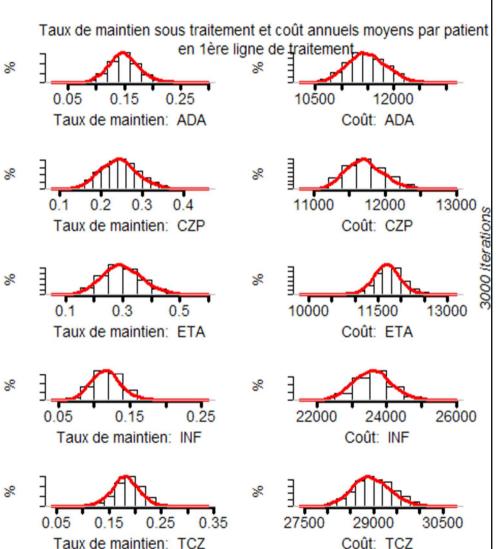
 $<sup>^{1}</sup>$  Furst $_{03}$ ;  $^{2}$  Keystone $_{04}$ ;  $^{3}$  Kim $_{07}$ ;  $^{4}$  Keystone $_{08}$ ;  $^{5}$  Smolen $_{09}$ ;  $^{6}$  Combe $_{06}$ ;  $^{7}$  Weinblatt $_{99}$ ;  $^{8}$  Kay $_{08}$ ;  $^{9}$  Keystone $_{09}$ ;  $^{10}$  Kremer $_{10}$ ;  $^{11}$  Maini $_{99}$ ;  $^{12}$  Schiff $_{08}$ ;  $^{13}$  Westhoven $_{06}$ ;  $^{14}$  Zhang $_{06}$ ;  $^{15}$  Genovese $_{08}$ ;  $^{16}$  Maini $_{06}$ ;  $^{17}$  Smolen $_{08}$ 





# Frontière d'efficience, courbe et frontière d'acceptabilité sociale

# Taux Estimé de Rémission Sous Traitement et Coût Estimé par Patient et par An

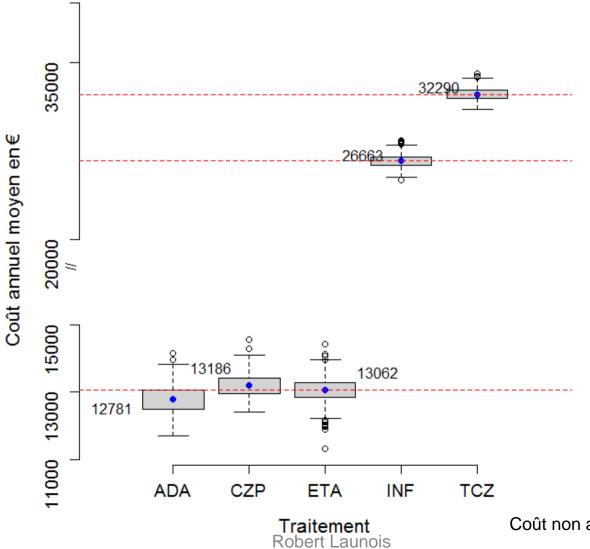

#### Cohorte 2011-2015

| woyenne [IC95%]      |
|----------------------|
| nt *                 |
| 0.151 [0,099; 0,212] |
| 0.247 [0,156; 0,349] |
| 0.298 [0,167; 0,446] |
| 0.119 [0,079; 0,167] |
| 0.188 [0,129; 0,249] |
|                      |

#### Coût annuel moyen par patient en €\*

| Adalimumab         | 11490 [10770; 12330] |
|--------------------|----------------------|
| Certolizumab pegol | 11730 [11190; 12370] |
| Etanercept         | 11740 [11060; 12380] |
| Infliximab         | 23645 [22870;24940]  |
| Tolicizumab        | 29050 [28220; 30020] |

<sup>\*</sup> Valeur actualisée au taux de 4%

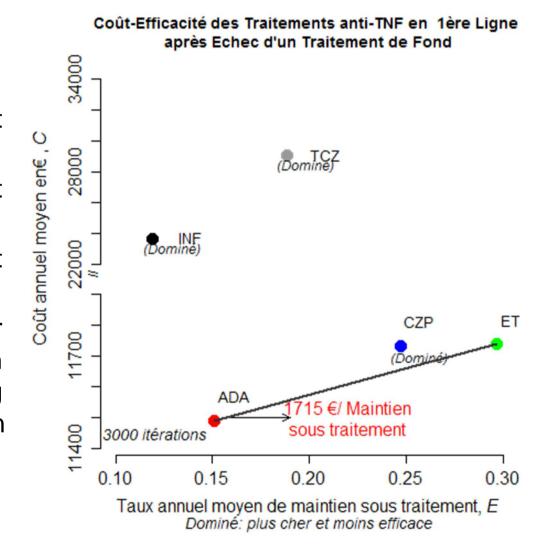





N W W W Réseau of Evaluation en

# Coût Global Annuel Moyen Estimé Par Tête et Par Traitement [Base 2011 ETA -10 %]

#### Coût Annuel Moyen par Patient et par Traitement







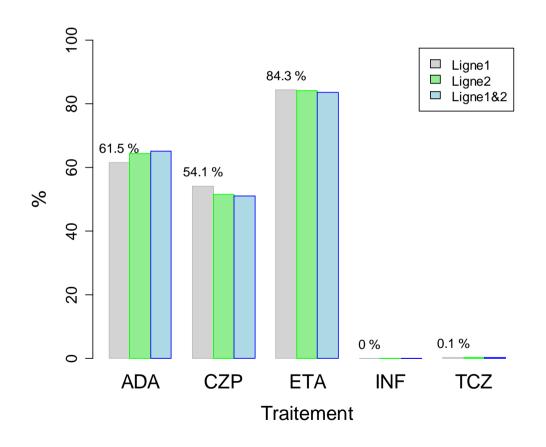

### Plan CE et Frontière d'Efficience

- Adalimumab et etanercept forment la frontière d'efficience
- Infliximab et tocilizumab sont fortement dominés
- Certolizumab Pegol est faiblement dominé
- Le coût additionnel annuel par rapport à adalimunab d'un maintien en rémission plus long sous etanercept est de 1715€ en moyenne



CZP, INF, TCZ Sont Plus Onéreux et Moins Efficaces






# Pourcentage des Simulations Appartenant à la Frontière d'Efficience

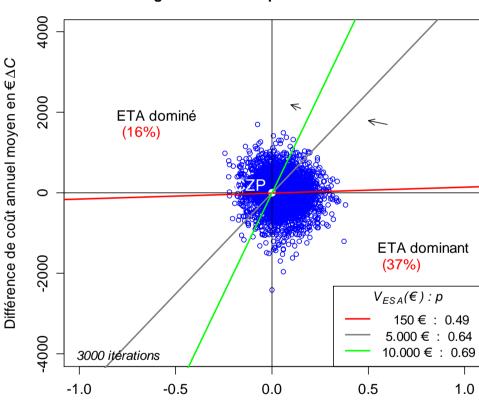
# Le pourcentage de 3000 simulations pour lesquels chacun des traitements est situé sur la frontière d'efficience

▼ INF et TCZ n'appartiennent pas à cette frontière

#### Pourcentage par traitement des 3000 simulations située sur la frontière d'efficience








# Plan CE et Volonté de Payer

Etanercept (ETA) vs. Certolizimab (CZP)

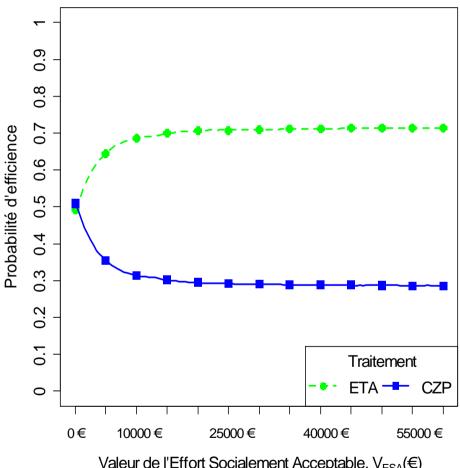
#### Plan Coût-Efficacité Ligne1: Etanercept vs. Certolizumab

- Dans 37% des simulations, etanercept domine certolizumab pegol. Il est dominé dans 16% des cas.
- Pour une valeur donnée de l'effort socialement acceptable (V<sub>ESA</sub>) égale à 150€, la probabilité que etanercept soit plus efficient que certolizumab pegol est de 0,5.
- Lorsque que la V<sub>ESA</sub> est estimée à 5000€, cette probabilité est de 0,64.



Différence de taux annuel moyen de maintien sous traitement,  $\Delta E$  p: Probabilité d'être efficient pour une valeur donnée de  $V_{ESA}$ : Valeur de l'Effort Socialement Acceptable






# Courbe d'Acceptabilité Sociale

#### Comparaisons par Paire:

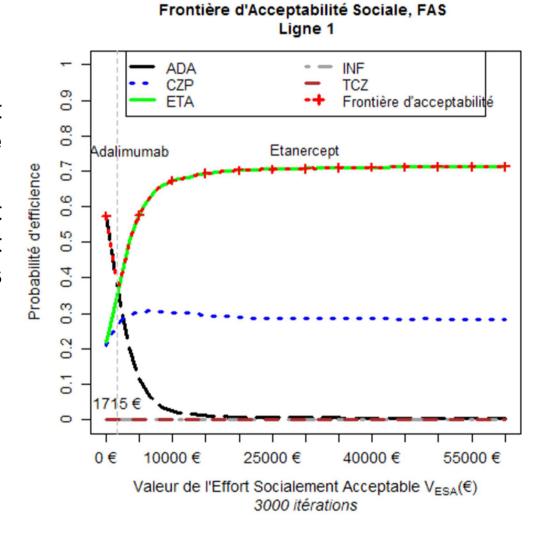
### F -

- Dès que V<sub>ESA</sub> >150€, la probabilité pour etanercept d'être efficient est supérieure à 0,5.
- Lorsque que la V<sub>ESA</sub> est estimée à 5000€, cette probabilité est de 0,65.
- Si V<sub>ESA</sub> >5000€ alors cette probabilité est proche de 0,7.



Courbe d'Efficience Socialement Acceptable, CESA Ligne 1 : Etanercept vs. Certolizumab

Valeur de l'Effort Socialement Acceptable, V<sub>ESA</sub>(€) 3000 itérations





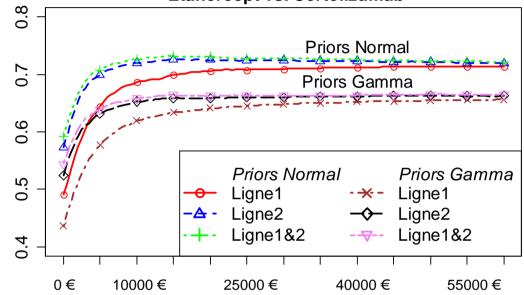

# Frontière d'Acceptabilité Sociale

#### Comparaison Multitraitements

- Adalimumab et etanercept sont situés sur la frontière d'acceptabilité sociale.
- Adalimumab représente le traitement le moins couteux, etanercept représente le traitement le plus efficace.






Briggs A, Smdm 2002 ;22:298-308

54

# Analyse de sensibilité : Prior Normal vs. Prior Gamma Ligne1, Ligne2, Ligne1&2

Courbe d'Efficience Socialement Acceptable, CESA en Fonction de la Ligne de Traitement et du Choix du Prior Etanercept vs. Certolizumab

- Les résultats ne sont pas différents entre les lignes de traitements et entre deux types des priors de consommations des ressources: Normal vs Gamma
- ETA a toujours plus de chance d'être plus efficient par rapport à CZP
- Les différences observées peuvent être expliquées par des consommations des ressources plus importantes sous le modèle Gamma



Valeur de l'Effort Socialement Acceptable, V<sub>ESA</sub>(€) 3000 itérations

| V <sub>ESA</sub> | Pr<br>Ligne1 | iors Norr<br>Ligne2 | mal<br>Ligne1&2 | Priors Gamma<br>Ligne1 Ligne2 Ligne1&2 |      |      |  |
|------------------|--------------|---------------------|-----------------|----------------------------------------|------|------|--|
| 0                | 0.49         | 0.57                | 0.59            | 0.44                                   | 0.52 | 0.54 |  |
| 5000             | 0.64         | 0.7                 | 0.71            | 0.58                                   | 0.63 | 0.64 |  |
| 10000            | 0.69         | 0.72                | 0.73            | 0.62                                   | 0.65 | 0.66 |  |





# Sélection Bibliographique

- \*\*Ades AE, Welton N, Lu G. Introduction to mixed treatment comparisons. MRC Health Services Research Collaboration 2006
- Ades AE. A chain of evidence with mixed comparisons: models for multi-parameter synthesis and consistency of evidence. Stat Med 2003;22:2995–3016
- Ades AE, Claxton K, Sculpher M. Evidence synthesis, parameter correlation and probabilistic sensitivity analysis. MRC Health Service Collaboration 2004
- ++ Annemans L. Budget impact analysis in Pharmaco-economics: from theory to practice. Drug Discovery Series. CRC Press 264 Pages. Edited By: R. J.
   G. Arnold. Arnold Consultancy & Technology LLC, New York, USA 2009.
- Bernier J., Parent E., Boreux JJ., Statistiques pour l'envirronnement traitement bavesien de l'incertitude. Edition Tec & Dos. Paris 2000
- Briggs A, Sculpher M, Claxton K, Decision modelling for health economic evaluation. Handbook in health economic evaluation series. Oxford University press, 2006, 237 pages
- ++ Briggs A, Goeree R, Blachouse G, O'Brien B. Probabilistic Analysis of Cost Effectiveness Models: Choosing between Treament Strategies for Gastroesophageal Reflux Desease. Med Decis Making 2002;22:298-308
- \*\*Bucher HC, Guyatt GH, Griffith LE, Walter SD. The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. J Clin Epidemiol 1997;50:683-91
- CES. Guide méthodologique pour la mise en place d'une analyse d'impact budgétaire. Paris: Collège des économistes de la santé:2008.
- Denis JB. (Mia-Inra) et Ritz Magali (Mica-Inra). Notions de Base Utiles en Modélisation Stochastique de Phénomènes Complexes. Accès internet 17/01:2012
- ++ HIQA. Guidelines for the Budget Impact Analysis of Health Technologies in Ireland. Dublin: Health Information and Quality Authority;2010.
- Huang E, Esrailian E, Spiegel BM. The cost-effectiveness and budget impact of competing therapies in hepatic encephalopathy a decision analysis. Aliment Pharmacol Ther. Oct 15 2007;26(8):1147-1161.
- ++ Jansen JP. Crawford B, Bergman G,Stam W. Bayesian meta-analysis of multiple treatment comparisons: an introduction to mixed treatment comparisons. Value Health.2008 Sep-Oct;11(5):956-64
- ++ Launois R., Avouac B., Berenbaum F., Blin O., Bru I., Fautrel B., Joubert J.-M., Sibilia J., Combe B., Comparison of Certolizumab Pegol with other anti-cytokine agents for the treatment of rheumatoid arthritis: a multiple-treatment bayesian meta-analysis, The Journal of Rheumatology,2011 May;38(5):835-45
- Launois R « Les arcanes décryptées de l'analyse médico économique à l'usage du décideur» Journal d'Economie Médicale 2008. Vol 26 N° 6-7 : 331-349
- ++ Launois R, Payet S, Saidenberg-Kermanac'h N, Francesconi C, Franca LR, Boissier MC. Budget impact model of rituximab after failure of one or more TNFalpha inhibitor therapies in the treatment of rheumatoid arthritis. Joint Bone Spine. Dec 2008;75(6):688-695.
- ++ Launois R, Payet S, Riou Franca L, et al. L'évaluation des technologies de santé : les protocoles de deuxième génération. Journal d'Économie Médicale. 2006;24(5) : 213-228
  - ++ Launois R. « Notions et mesure des coûts en fonction de la perspective choisie » in Guide méthodologique pour l'évaluation des actions de santé, recommandations méthodologiques CES Paris 2003. Annexe 1 repris dans Launois R., Vergnenegre A., Garrigues B. Notions et mesure des coûts en fonction de la perspective choisie. Bulletin du cancer. Novembre 2003 ; 90 (11) : 146-154.
- Launois R, Payet S. Évaluation pharmacoéconomique des épisodes dépressifs majeurs et des récidives. Neuropsy news. 2003;2(5):209-221.
- ++ Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment comparisons. Stat Med. Oct 30 2004;23(20):3105-3124.
- Maravic M « Economic impact of rheumatoidarthritis (RA) biotherapies in France » Joint, bone, spine: revue du rhumatisme 2010;77(6):546-51.
- Mauskopf JA, Sullivan SD, Annemans L, et al. Principles of good practice for budget impact analysis: report of the ISPOR Task Force on good research practices--budget impact analysis. Value Health. Sep-Oct 2007;10(5):336-347.
- Mauskopf JA, Earnshaw S, Mullins CD. Budget impact analysis: review of the state of the art. Expert Rev Pharmacoecon Outcomes Res. Feb 2005;5(1):65-79.
- Mauskopf J. Meeting the NICE requirements: a Markov model approach. Value Health. Jul-Aug 2000;3(4):287-293.
- ++Mauskopf J. Prevalence-based economic evaluation. Value Health. Nov 1998;1(4):251-259.
  - \*\* Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statemen Ann Intern Med August 18, 2009 151:264-269
- NICE. Developing costing tools Methods guide. London: National Institute for Health and Clinical Excellence; 2008.
- Niezen MG, de Bont A, Busschbach JJ, Cohen JP, Stolk EA. Finding legitimacy for the role of budget impact in drug reimbursement decisions. Int J Technol Assess Health Care. Jan 2009;25(1):49-55.
- ++ Orlewska E, Gulacsi L. Budget-impact analyses: a critical review of published studies. Pharmacoeconomics. 2009;27(10):807-827.
- Orlewska E, Mierzejewski P. Proposal of Polish guidelines for conducting financial analysis and their comparison to existing guidance on budget impact in other countries. Value Health. Jan-Feb 2004;7(1):1-10.
- Saporta G., Droesbeke JJ., Fine J. Méthodes bayésiennes en statistique. Edition Technip.Paris 2002

U U Réceau d'Evaluation Réconomie de la San



# **BACK UP**



# « Réunir les Incertitudes dans de Grands Sacs d'Ignorance »

Bernier J., Parent E., Boreux JJ. Paris 2000

- Faire une typologie de ces sacs,
- définir leur forme à partir d'un petit nombre de paramètres
- simuler des tirages au hasard issus de ces lois

### Caractérisation des Probabilités

- Si on connaît le taux de réponse ou le taux de progression et son étendue sans que le nombre d'événements n ne soit spécifié.→ on utilise beta, l'étendue et le taux de progression pour calculer le nombre de progressions
- Ex: Découverte d'un anévrysme abdominal de l'aorte sub rénale de 4 cm chez un homme de 60 ans. La proportion ( ) des anévrysmes aortiques dont le diamètre augmente chaque année s'élève à 3,3%. Min Max = .016 .049; s<sup>2</sup> = (Max-Min)/4 = (.049 .016)/4 = .00825
- ➤ Population à risque  $n = [\overline{x}(1-\overline{x})/s^2] 1$  [c.a.d le taux moyen des anévrysmes dont le diamètre croit\*son complémentaire)/s²)]-1= [(.033)(.967)/.00825²))-1= 467.85
- Le nombre de progressions (PD) = [% des anévrysmes dont le diamètre croit, multiplié par l'effectif à risque soit :  $\bar{\chi}*n = .033*468 = 15.44$
- Paramètres de la loi de distribution Beta :

$$\alpha = PD = 15,44 \; ; \beta = n - PD = 467.85 - 15.44 = 452.41$$
  
 $p_1 \sim Beta(15,44 \; ; 452,41)$ 



# Caractérisation des Proportions

- ➤ Bornée sur [0 ; 1] → Loi Beta
- ▼ Méthode Pragmatique :
  - $\rightarrow \alpha$  = Nombre de succès
  - $> \beta$  = Nombre d'échecs
- Méthode des moments :
  - Retrouver α et β à partir des caractéristiques de la distribution : moyenne, variance , médiane, bornes d'un Intervalle de Confiance...



# Caractérisation des Risques Relatifs

- $\times$  MA $\rightarrow$ RR 0.86 Cl<sub>95%</sub> [ 0.71-0.05]
- $\times$  Ln  $\rightarrow$  -0,15 [-0,35-0;05]
- ➤ Calcul de l'erreur type en In
  - -(0.05-0.35)/(1.96\*2)=0.1
- × N(-0,15; 0,10)
- Repasser à l'échelle métrique après tirage



### Calcul des Moments de Gamma

Soit une **loi gamma** avec un premier paramètre de forme  $\alpha$  et un second paramètre de forme  $\beta$ , la moyenne dans la population est égale à  $\alpha \beta$ , la variance à  $\alpha \beta^2$ ; est la moyenne empirique et  $\beta$  l'écart type de l'échantillon  $\theta \sim Gamma(\alpha,\beta)$ 

× Variance: 
$$V[\theta] = \alpha \beta^2$$

Egalisation des moments

$$\overline{x} = \alpha \beta$$
  $s^2 = \alpha \beta^2$ 

Résolution p/r variables observées

$$\alpha = \frac{\overline{x}^2}{S^2} \qquad \beta = \frac{S^2}{\overline{x}}$$
Briggs A, Smdm 2002;22:298-308 63



### Caractérisation des Coûts

- ➤ Ioi Gamma (méthode des moments)
  - Considérons le modèle développé par Chancellor et cité par Briggs et al. 2006; Le coût qui est associé à un des quatre états de santé du modèle : l'état AIDS = £1648
  - L'erreur standard est non documentée
  - Briggs suppose que SE = la moyenne
- Paramètres de distribution de la loi gamma

$$\alpha$$
 = 1  $\beta$  = 6948<sup>2</sup>/6948 (Formulation classique)  $\theta \sim Gamma$  (1,6948)

Briggs A., Claxton S., Sculpher M; 2006



# Hypothèses du Modèle Coût-Efficacité

- 24 essais 2 (TEMPO et ARMADA) soit 22 ; 11 protocoles ; 7953 patients
- Les résultats du modèle en termes d'efficacité et de coût ont été calculés en 1ère ligne, en 2ème ligne et toutes lignes confondues.
- A 5 ans, le taux de maintien sous traitement est égale par cycle de 6 mois au taux de réponse\*(1- taux d'abandons)\*(1-taux d'infections), et ceci sur 10 cycles
- Les taux de maintien sous traitement en seconde ligne ont été minorés de 10%
- Le coût et le taux de maintien sous traitement ont été actualisés au taux annuel de 4% (préférence pour le temps présent) (Lebègue 2004)
- Les résultats ont été analysés en termes de rapport coût-efficacité dans le graphique 4 cadrans, en termes d'acceptabilité sociale et d'avantage collectif additionnel net

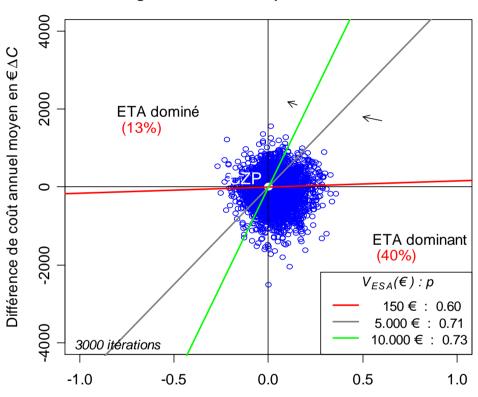
# Modèle Economique Coût-Efficacité

Taux de maintien sous traitement:

- ▼ Efficacité actualisée = Efficacité\*(1+t) <sup>-j</sup>
- ➤ Coût actualisé = Coût\*(1+t) <sup>-j</sup>

  avec t, le taux d'actualisation par cycle et j, le j <sup>ième</sup> cycle (j=1..10), avec (1+t)=(1+4%) <sup>-2</sup>
- Bénéfice net de santé:

- Un traitement est plus efficient que le ou les comparateurs quand son BNS est (le) plus élevé
- ➤ Dans l'analyse principale, les priors des ressources consommées suivent des lois normales alors que dans l'analyse de sensibilité, ils suivent des lois gamma






# Analyse Toutes Lignes Confondues

#### Plan Coût-Efficacité Ligne1&2: Etanercept vs. Certolizumab

Probabilité d'etanercept d'être efficient par rapport au certolizumab pegol est plus élevée toutes lignes confondues qu'elle ne l'était en 1ère ligne seule



Différence de taux annuel moyen de maintien sous traitement,  $\Delta E$  p: Probabilité d'être efficient pour une valeur donnée de  $V_{ESA}$   $V_{ESA}$ : Valeur de l'Effort Socialement Acceptable



